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Abstract
Quantum dense coding transmits classical information by sending a quantum
system with the assistance of quantum entanglement. The classical information
capacity of a quantum dense coding system is obtained, where a sender and
receiver share a completely entangled state and a quantum system encoded by
applying unitary operators is sent through an arbitrary quantum channel. The
result is compared with that obtained in another setting.

PACS numbers: 03.67.Hk, 03.67.−a

Quantum dense coding is a method for transmitting classical information by sending
an encoded quantum system with the assistance of quantum entanglement [1]. It was
originally proposed for ideal systems in which Alice (a sender) and Bob (a receiver) share
a completely entangled state and a quantum channel is noiseless [1–3], and it was then
generalized for systems which use mixed entangled states and noisy quantum channels
[4, 5]. If one does not use quantum entanglement, the upper bound of the classical information
capacity is log2 N bits when a quantum system which carries the information is described by an
N-dimensional Hilbert space H. Quantum entanglement, however, can enhance the classical
information capacity greater than log2 N bits. In quantum dense coding, Alice and Bob share
an arbitrary bipartite quantum state ρ̂AB defined on an (N × N)-dimensional Hilbert space
H ⊗ H. To encode 2 log2 N bits of classical information, Alice applies one of N2 unitary
operators to her part of the quantum state ρ̂AB and sends the encoded system to Bob through
a quantum channel. After receiving it, Bob performs a quantum measurement to extract the
information encoded by Alice. If the quantum channel is noiseless, where the output state is
identical with the input state, one can obtain the classical information capacity C(ρ̂) of the
quantum dense coding system [6, 7], which is given by

C(ρ̂) = log2 N + S(ρ̂B) − S(ρ̂AB) (1)
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where ρ̂B is the reduced quantum state obtained by ρ̂B = TrA ρ̂AB and S(ρ̂) is the von Neumann
entropy of a quantum state ρ̂, namely, S(ρ̂) = − Tr[ρ̂ log2 ρ̂]. For a completely entangled
state ρ̂AB which yields S(ρ̂AB) = 0 and S(ρ̂B) = log2 N , the capacity C(ρ̂) = 2 log2 N is
obtained.

This letter derives the classical information capacity C(L̂) of a quantum dense coding
system, where Alice and Bob share a completely entangled state |�AB〉 which belongs to an
(N ×N)-dimensional Hilbert space H⊗H and the encoded system is sent through a quantum
channel described by an arbitrary trace-preserving completely positive map L̂. The capacity
C(L̂) is compared with C(ρ̂) given by equation (1).

A completely entangled state |�AB〉 of an (N × N)-dimensional Hilbert space H ⊗ H
shared by Alice and Bob can be written as

|�AB〉 = 1√
N

N−1∑
k=0

∣∣ψA
k

〉 ⊗ ∣∣ψB
k

〉
(2)

where {|ψk〉|k = 0, 1, . . . , N − 1} is a complete orthonormal system of the N-dimensional
Hilbert space H. One introduces N2 unitary operators defined on the N-dimensional Hilbert
space H, which are called the unitary depolarizers [1, 7]

Ûjk =
N−1∑
l=0

e(2π i/N)jl |ψl mod N 〉〈ψl+k mod N | (3)

with j, k = 0, 1, . . . , N − 1. It is an easy task to see that the unitary depolarizers satisfy the
relations

1

N

N−1∑
j=0

N−1∑
k=0

ÛjkX̂Û
†
jk = (Tr X̂)1̂

1

N
Tr

[
ÛjkÛ

†
lm

] = δjlδkm (4)

for any operator X̂ defined on the Hilbert space H. These relations imply that the set of
completely entangled states,

{∣∣�AB
jk

〉 = (
ÛA

jk ⊗ 1̂B
)|�AB〉∣∣j, k = 0, 1, . . . , N − 1

}
, becomes

a complete orthonormal system of the Hilbert space H ⊗ H.
We suppose that to perform the quantum dense coding, Alice and Bob share a statistical

mixture of the completely entangled states
∣∣�AB

jk

〉
, where the shared quantum state ρ̂AB is given

by

ρ̂AB =
N−1∑
j=0

N−1∑
k=0

λjk

∣∣�AB
jk

〉 〈
�AB

jk

∣∣ (5)

with λjk � 0 and
∑N−1

j=0

∑N−1
k=0 λjk = 1. To encode 2 log2 N bits of classical information, Alice

applies one of N2 unitary operators V̂ jk (j, k = 0, 1, . . . , N − 1) to her part of the quantum
state ρ̂AB and sends the encoded system to Bob through an arbitrary quantum channel L̂. Then
Bob obtains the quantum state

ρ̂AB
jk

′ = (L̂A ⊗ ÎB)
[(

V̂ A
jk ⊗ 1̂B

)
ρ̂AB

(
V̂

A†
jk ⊗ 1̂

)]
. (6)

When the prior probability of the classical information ‘jk’ is πjk , where πjk � 0 and∑N−1
j=0

∑N−1
k=0 πjk = 1, the Holevo function χ(L̂; {πjk}) [8] of the quantum dense coding

system is given by

χ(L̂; {πjk}) = S(ρ̂AB′) −
N−1∑
j=0

N−1∑
k=0

πjkS
(
ρ̂AB

jk
′) (7)
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where ρ̂AB′ = ∑N−1
j=0

∑N−1
k=0 πjkρ̂

AB
jk

′. The classical information capacity C(L̂) of the system

is the maximum value of the Holevo function χ(L̂; {πjk}) with respect to the prior probability
πjk , that is,

C(L̂) = max
{πjk}

χ(L̂; {πjk}). (8)

To obtain the classical information capacity C(L̂), we first estimate the Holevo function
χ(L̂; {πjk}) given by equation (7). Since the completely entangled state

∣∣�AB
jk

〉
satisfies the

relation (X̂A⊗1̂B)
∣∣�AB

jk

〉 = (1̂A⊗X̂BT)
∣∣�AB

jk

〉
for any operator X̂ defined on the N-dimensional

Hilbert space H, where the symbol ‘T’ stands for the transposition of operators, and the von
Neumann entropy S(ρ̂) is invariant under any unitary transformation of a quantum state ρ̂, the
second term on the right-hand side of equation (7) becomes

N−1∑
j=0

N−1∑
k=0

πjkS
(
ρ̂AB

jk
′) = S((L̂A ⊗ ÎB)ρ̂AB). (9)

On the other hand, since we have the relation TrB ρ̂AB = (1/N)1̂A and TrA ρ̂AB = (1/N)1̂B

from equation (5), the sub-additivity of the von Neumann entropy yields the inequality

S(ρ̂AB′) � log2 N + S((1/N)L̂A1̂A). (10)

Hence from equation (7), the Holevo function χ(L̂; {πjk}) satisfies the inequality

χ(L̂; {πjk}) � log2 N + S((1/N)L̂A1̂A) − S((L̂A ⊗ ÎB)ρ̂AB). (11)

Since the right-hand side of this inequality does not depend on the prior probability πjk of the
classical information, we obtain the inequality for the classical information capacity C(L̂) of
the quantum dense coding system

C(L̂) � log2 N + S((1/N)L̂A1̂A) − S((L̂A ⊗ ÎB)ρ̂AB). (12)

Next, we show that the equality of equation (12) can be attained by setting V̂jk = Ûjk and
πjk = 1/N2 (j, k = 0, 1, . . . , N − 1). In this case, using equation (4), we can calculate the
quantum state ρ̂AB′ as follows:

ρ̂AB′ = 1

N2

N−1∑
j=0

N−1∑
k=0

(L̂A ⊗ ÎB)
[(

ÛA
jk ⊗ 1̂B

)
ρ̂AB

(
Û

A†
jk ⊗ 1̂B

)]

= (L̂A ⊗ ÎB)


 1

N2

N−1∑
j=0

N−1∑
k=0

(
ÛA

jk ⊗ 1̂B
)
ρ̂AB

(
Û

A†
jk ⊗ 1̂B

)

= (L̂A ⊗ ÎB)

(
1

N
1̂A ⊗ TrA ρ̂AB

)

= 1

N
L̂A1̂A ⊗ 1

N
1̂B (13)

from which we obtain the equality S(ρ̂AB′) = log2 N + S((1/N)L̂A1̂A). This result implies
that the equality of equation (12) is attained. Therefore, it has been shown that the classical
information capacity C(L̂) of the quantum dense coding system is given by

C(L̂) = log2 N + S((1/N)L̂A1̂A) − S((L̂A ⊗ ÎB)ρ̂AB). (14)

In particular, when Alice and Bob share the completely entangled state |�AB〉, the capacity
C(L̂) becomes

C(L̂) = log2 N + S((1/N)L̂A1̂A) − S((L̂A ⊗ ÎB)|�AB〉〈�AB|). (15)
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This is the main result of this letter. If the quantum channel is noiseless (L̂ = Î),
C(L̂) = 2 log2 N is obtained.

To compare the classical information capacity given by equation (15) with that given by
equation (1), we note the relation between bipartite quantum states and quantum channels
[9]. For a given quantum channel L̂, we can assign a bipartite quantum ρ̂AB

L by the relation
ρ̂AB
L = (L̂A ⊗ ÎB)|�AB〉〈�AB|, where |�AB〉 is a completely entangled state. On the other

hand, for a given bipartite quantum state ρ̂AB that satisfies the relation TrA ρ̂AB = (1/N)1̂B,
we can uniquely assign a quantum channel L̂ρ by the relation ρ̂AB = (

L̂A
ρ ⊗ ÎB

)|�AB〉〈�AB|
[9]. Then we can rewrite the classical information capacity C(L̂) given by equation (15) as

C(L̂) = log2 N + S
(
ρ̂A
L
) − S

(
ρ̂AB
L

) = C(ρ̂L) (16)

where C(ρ̂) is given by equation (1). On the other hand, the classical information capacity
C(ρ̂) can be expressed as

C(ρ̂) = log2 N + S
(
(1/N)L̂A

ρ 1̂A
) − S

((
L̂A

ρ ⊗ ÎB
)|�AB〉〈�AB|) = C(L̂ρ) (17)

where we have exchanged A and B in equation (1). As an example, we consider the Werner
state ρ̂AB

p = (1−p)|�AB〉〈�AB|+(p/N2)1̂A ⊗ 1̂B and the depolarizing channel L̂p defined by

L̂pX̂ = (1 − p)X̂ + (p/N)1̂. It is obvious that the equality ρAB
p = (

L̂A
p ⊗ ÎB

)|�AB〉〈�AB| is
satisfied. Then the equality C(ρ̂p) = C(L̂p) holds. In fact, we obtain C(ρ̂p) = C(L̂p) ≡ Cp,
where

Cp = log2[N2 − (N2 − 1)p] +
N2 − 1

N2
p log2

[
p

N2 − (N2 − 1)p

]
. (18)

This result means that the quantum dense coding system in which the completely entangled
state is shared and the encoded system is sent through the depolarizing channel yields the
classical information capacity equal to that of the quantum dense coding system in which the
Werner state is shared and the encoded system is sent through the noiseless quantum channel.

We finally consider the relation between the classical information capacity and the von
Neumann mutual information in the quantum dense coding system. When Alice and Bob
share the completely entangled state |�AB〉, the quantum state ρ̂AB

in of the total system just
before Alice inputs the encoded system to the quantum channel is given by

ρ̂AB
in =

N−1∑
j=0

N−1∑
k=0

πjk

∣∣�AB
jk

〉 〈
�AB

jk

∣∣. (19)

After Alice has transmitted the encoded system, the quantum state ρ̂AB
out of the total system,

which is the output system of the quantum channel, becomes

ρ̂AB
out =

N−1∑
j=0

N−1∑
k=0

πjk(L̂A ⊗ ÎB)
∣∣�AB

jk

〉 〈
�AB

jk

∣∣. (20)

Then one can introduce the compound state ρ̂AB
in–out of the input and output systems by

[10, 11]

ρ̂AB
in–out =

N−1∑
j=0

N−1∑
k=0

πjk

∣∣�AB
jk

〉 〈
�AB

jk

∣∣ ⊗ (L̂A ⊗ ÎB)
∣∣�AB

jk

〉 〈
�AB

jk

∣∣ (21)

the reduced quantum states of which are ρ̂AB
in = Trout ρ̂

AB
in–out and ρ̂AB

out = Trin ρ̂AB
in–out. Then

the von Neumann mutual information IN(in : out) between the input and output systems is
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given by

IN(in : out) = S
(
ρ̂AB

in

)
+ S

(
ρ̂AB

out

) − S
(
ρ̂AB

in–out

)
. (22)

In particular, when πjk = 1/N2 (j, k = 0, 1, . . . , N − 1), it is easy to see from
equations (19)–(21) that

S
(
ρ̂AB

in

) = 2 log2 N (23)

S
(
ρ̂AB

out

) = log2 N + S((1/N)L̂A1̂A) (24)

S
(
ρ̂AB

in–out

) = 2 log2 N + S((L̂A ⊗ ÎB|�AB〉〈�AB|). (25)

Hence, we obtain the von Neumann mutual information

IN(in : out) = log2 N + S((1/N)L̂A1̂A) − S((L̂A ⊗ ÎB)|�AB〉〈�AB|) (26)

which is equal to the classical information capacity C(L̂) given by equation (15). Therefore,
when we define the compound state of the input and output systems by equation (21), we
obtain the equality

IN(in : out) = C(L̂). (27)

The result may be reasonable since the compound state given by equation (21) is the separable
state of the input and output systems and thus it contains only their classical correlation.

In summary, we have derived the classical information capacity C(L̂) of the quantum
dense coding system, where Alice and Bob share a completely entangled state and the encoded
system is sent through an arbitrary quantum channel. The classical information capacities of
the quantum dense coding system that are known up to now are summarized as follows:

Noiseless channel Noisy channel

Completely entangled state 2 log2 N C(L̂)

Arbitrary bipartite state C(ρ̂) Unknown

where C(ρ̂) and C(L̂) are given by equations (1) and (15). The capacity in the most general
setting is unknown, where Alice and Bob share a given bipartite state and the encoded system
is sent through an arbitrary quantum channel. In the quantum dense coding, the quantum
entanglement shared by Alice and Bob is given. When the quantum entanglement shared
by Alice and Bob is unlimited, the classical information capacity, called the entanglement-
assisted classical capacity, is obtained [12, 13]. Furthermore, we have discussed the relation
between the classical information capacity and the von Neumann mutual information of the
separable compound state.
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